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Abstract. We investigate the performance of theGW approximation by comparison to exact
results for small model systems. The role of the chemical potentials in Dyson’s equation as
well as the consequences of numerical resonance broadening are examined, and we show how a
proper treatment can improve computational implementations of many-body perturbation theory
in general. Exchange-only andGW -calculations are performed over a wide range of fractional
band fillings and correlation strengths. We thus identify the physical situations where these
schemes are applicable.

1. Introduction

Materials with strong electronic correlation are of considerable interest in solid-state science,
but their computational treatment is notoriously difficult: diagonalizing the corresponding
Hamiltonians is not feasible for large systems, and the strong correlation causes mean-
field methods to break down. The collective dynamics of such systems can in principle
be described exactly by many-body perturbation theory, however. In this framework, all
exchange and correlation effects are absorbed into the self-energy operator6, which may be
thought of as a non-local, energy-dependent potential. In this paper, we investigate a class
of self-energies based on Hedin’sGW approximation [1]. Its diagrammatic representation,
which neglects explicit vertex corrections, is reminiscent of the Fock exchange potential,
but the Coulomb interaction includes dynamic screening. Our first aim is to examine
whether numerical improvements can be achieved by including further correlation effects in
the underlying propagators without changing the diagrammatic form of the self-energy.
To assess the performance of these schemes, we compare the calculated spectra with
exact results for small model systems that can still be solved by numerical diagonalization
techniques. A similar study was recently reported for a two-dimensional Hubbard cluster
[2]; here we extend that work by considering further variants as well as a larger variety
of systems, most importantly a much wider range of band fillings. Our second aim is to
optimize the practical implementation. To this end, we investigate the treatment of the
chemical potentials in Dyson’s equation and the consequences of resonance broadening in
the course of numerical manipulations. Both points are all too often ignored, but may have
significant impact on calculated spectra.

The central quantity of interest is the one-particle Green’s functionG, whose imaginary
part is directly linked to the spectral functionA = π−1|ImG|. While many authors adopt a
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momentum and energy representationG(k, ω) that follows naturally from the band theory of
extended systems, we will always considerGRR′(ω) in real space, which is more appropriate
for finite clusters. Furthermore, this representation has the advantage of showing the entire
excitation spectrum in each diagonal element of the Green’s function. While this is not
always desirable if one wants to concentrate on the evolution of particular quasiparticles,
it allows us to judge the performance of any self-energy approximation on the basis of a
single matrix element. However, we also calculatedG in reciprocal space for corresponding
translationally invariant systems to confirm our identification of various spectral features
with either quasiparticles or satellites from a particular excitation.

The order of this paper is as follows. Section 2 introduces the model Hamiltonian. In
section 3 we describe our procedure for obtaining the exact Green’s function. In section 4
we review theGW approximation and address details of the practical implementation. Sec-
tion 5 lists the approximation variants we consider and gives numerical results. Finally,
section 6 contains our conclusions.

2. Model description

The Hubbard model [3] is the classic example of a Hamiltonian that describes strong,
short-range electron–electron interaction. It is sufficiently simple that it can be diagonalized
exactly for small cluster sizes using standard numerical techniques, yet its physical behaviour
is non-trivial and reflects many properties of real materials. The model variant that we
employ is a finite chain ofM ions with open boundary conditions. Each lattice site contains
one orbital that can accommodate up to two electrons with opposite spin. Doubly occupied
orbitals are penalized by a repulsive on-site interactionU , while the hopping of transient
electrons between neighbouring sites yields an energy gain of−t . The full Hamiltonian is

H = −t
∑
〈R,R′〉,σ

c
†
Rσ cR′σ + U

∑
R

n̂R↑n̂R↓ +
∑
R,σ

VRn̂Rσ (1)

wherec†Rσ andcRσ are the creation and annihilation operators for an electron at siteR with
spin σ , n̂Rσ ≡ c†Rσ cRσ is the particle number operator, and〈R,R′〉 indicates a sum over
nearest neighbours only. We choose the energy norm by settingt = 1. The Hamiltonian
further contains a local potentialVR that will later serve as a mean-field approximation for
exchange and correlation. We denote the total electron number byN .

The properties of the Hubbard model have been thoroughly investigated. In particular,
the one-dimensional case can be solved analytically using the Betheansatz[4] and, in
the limit of infinite chain length, is known to yield a Luttinger-liquid ground state. The
corresponding Green’s function describes a gapless spectrum of bosonic collective modes
involving charge and spin degrees of freedom [5]. For finiteM, however, the renormalized
quasiparticle weight factors remain non-zero as long as the Coulomb integralU does not
exceed a critical value [6], which behaves asymptotically like 1/M. In this parameter
range the model exhibits Fermi-liquid behaviour. The resolution required to differentiate
convincingly between Fermi liquids and Luttinger liquids is in fact near infinitesimal on
the energy scale that we consider, and the Lorentzian broadening of resonances essentially
wipes out features on a genuinely small scale that are of primary concern in the distinction
between the two. Even so, we have confirmed that all of the systems that we study in this
paper are comfortably within the Fermi-liquid regime, so the same perturbation methods as
for higher dimensions can be applied.

As we are working with small model Hamiltonians, it is essential to consider the
possible sensitivity of our results to the parameters in (1). The system size is a particularly
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Figure 1. The exact Green’s function (a) andGW approximation (b) for varying chain length
M with constant 75% band filling andU = 2. The broad quasiparticle and satellite spectral
features are insensitive toM, indicating that within the Fermi-liquid limitations of the model it
is possible to generalize the results reported here.

important aspect. We have calculated the exact Green’s function and a correspondingGW

approximation for varying chain length while keepingU = 2 and the fractional band filling
N/(2M) = 75% constant. In figure 1, as in all later graphs, we show the matrix element
ImG1,1(ω) in arbitrary units and align the chemical potentials to facilitate comparison.
The number of peaks in the spectral function grows with the chain length as expected.
However, it is also evident that thequalitative appearance of the graphs changes little: the
broad quasiparticle and satellite peaks are insensitive toM. This becomes even clearer
when the integral

∫ ω
−∞ ImG(ω′) dω′, which averages over oscillations on a small scale, is

considered. We have thus demonstrated that the results reported in the following sections
are relatively insensitive to the chain length and so retain significance beyond the particular
model geometry, although of course the formal extrapolation toM →∞ cannot be made
because of the eventual transition to a Luttinger liquid.

3. Exact numerical solution

The exact one-particle Green’s function at zero temperature is defined as

GRR′(t − t ′) = −i〈N |T {cRσ (t)c†R′σ (t ′)}|N〉 (2)

where |N〉 is the ground state of the interactingN -electron system,T is Wick’s time-
ordering operator, andcRσ (t) ≡ exp(iHt)cRσ exp(−iHt) denotes the time-dependent wave-
field operator in the Heisenberg picture. We have suppressed the spin index inG because
the Green’s function is diagonal and degenerate inσ . It is convenient to Fourier transform
(2) to the energy domain and rewrite the Green’s function in the form

GRR′(ω) = 〈N |cRσ
1

ω −H+ + EN c
†
R′σ |N〉 + 〈N |c†R′σ

1

ω +H− − EN cRσ |N〉. (3)

HereEN is the ground-state energy corresponding to|N〉 andH± denotes the Hamiltonian
matrix forN ± 1 electrons.

The main computational difficulty is that the number of basis vectors of the many-body
problem grows exponentially with the system size, because it quantifies the(2M!)/[(2M −
N)!N !] possibilities of distributingN electrons ontoM twofold spin-degenerate orbitals.
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For a ten-site chain at half-filling, the largest model that we consider, this implies a basis
size of 184 756 (although greater chain lengths are feasible if the band filling is very small or
very large). However, less than 0.01% of the elements ofH are non-zero, so sparse-matrix
techniques may be used to obtain|N〉 andEN .

The diagonal elementsGRR, which enter the calculation of the electron density and other
quantities, may be calculated without full matrix inversion by tridiagonalizingω∓H±±EN
using the recursion method [7] and starting with the vectorc

†
R′σ |N〉 or cRσ |N〉. For non-

diagonal elements a block recursion must be performed. Neither an inversion nor a complete
diagonalization would be feasible in terms of computer memory: for the example with
M = N = 10 mentioned above, 210 Gbyte are required to store the eigenvectors ofH±
and 254 Gbyte for the inverse ofω∓H± ±EN , although this could be somewhat reduced
by exploiting symmetry relations.

Once the recursion coefficients, i.e. the diagonal elementsan and the off-diagonal
elementsb2

n of the tridiagonal matrix, are determined iteratively up to a suitable recursion
depthD, the elements of the Green’s function are obtained from

GRR(ω) = 1

ω − a0−
b2

1

ω − a1− · · · −
b2
D

ω − aD

. (4)

Even with a basis size of 184 756 about 400 recursions are sufficient, since the number of
actual spectral features is small compared to the basis size. Ideally a single recursive level
for each additional peak in the spectrum would be necessary, and indeed we require only a
few recursions per feature to achieve full convergence in practice. The quasiparticles and
collective excitations of theN -electron system are determined by the eigenvalues ofH±
and feature as simple poles in the Green’s function. For numerical convenience, we broaden
these sharp resonances into Lorentzians by offsetting the singularities from the real energy
axis by a distanceδ. This procedure does not imply a finite lifetime of the excited states.

4. TheGW approximation

The GW approximation constitutes a diagrammatic expansion of the self-energy that
neglects explicit vertex corrections. However, it includes dynamic screening of the Coulomb
interaction and is thus capable of describing certain correlation effects. Originally theGW -
self-energy was derived as a first-order iterative solution of Hedin’s coupled equations for
the propagators of the interacting many-electron system starting from Hartree theory [1].
In this section we briefly review the formalism and subsequently address crucial details
concerning the computational implementation.

4.1. The self-energy in theGW approximation

Starting from a mean-field Hamiltonian that may contain a suitable effective potentialV ,
we obtain a zeroth-order Green’s function

G0
RR′(ω) =

∑
s

〈R|ψs〉〈ψs |R′〉
ω − εs + i sgn(εs − µ0)δ

(5)

in terms of the one-particle eigenstates|ψs〉 and corresponding energy eigenvaluesεs . The
symbolµ0 denotes the chemical potential. Conventionally, the random-phase approximation

PRPA
RR′ (τ ) = −2iG0

RR′(τ )G
0
R′R(−τ) (6)
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for the irreducible polarization propagator is employed, withτ ≡ t − t ′ and a factor 2 for
spin summation. The dynamically screened interaction is then obtained from

WRPA(ω) = U [1− PRPA(ω)U
]−1

(7)

in matrix notation. Finally, the self-energy is given by the expression

6GW
RR′(τ ) = iG0

RR′(τ )W
RPA
RR′(τ + η) (8)

to which theGW approximation owes its name.η denotes a positive infinitesimal. The
self-energy may be inserted into Dyson’s equation to yield the improved Green’s function

GGW(ω) = [1−G0(ω)(V H +6GW(ω)− V )]−1
G0(ω) (9)

whereV H
R = U〈n̂R↑ + n̂R↓〉 indicates the Hartree potential. During the calculation we use

fast Fourier transforms to change between the time and energy domains as appropriate in
order to avoid costly numerical convolutions.

4.2. Alignment of the chemical potentials

Dyson’s equation (9) combines the equation of motion of the interacting with that of
the corresponding non-interacting system. The self-energy specifies the deviation of the
quasiparticle states from the bare electrons and holes upon adiabatic introduction of the
Coulomb potential. It is thus an equilibrium quantity that should really be calculated
self-consistently, i.e. the dressed Green’s function obtained from Dyson’s equation is
reinserted into the self-energy until convergence has been achieved. This procedure is
so computationally demanding, however, as to make it unfeasible for large-scaleab initio
calculations. Furthermore, while the random-phase approximationPRPA[G0] by construction
gives the proper response function of time-dependent Hartree theory, the same expression
evaluated with a self-consistent Green’s function ceases to yield a physically meaningful
propagator due to the neglect of appropriate vertex corrections. As a consequence the
spectrum becomes broad and structureless [8]. On the other hand, the self-energy inherits
the chemical potential of the underlying Green’s function, and a mismatch with that of the
dressed propagator may result in wrong time-ordering.

A possible solution is to use a zeroth-orderG0 to evaluate the self-energy but shift it in
such a way as to align its chemical potential with that of the dressed Green’s function. This
limited degree of self-consistency, originally suggested by Hedin [1], suffices to ensure the
correct time-ordering while leaving the response function unchanged and thus physically
meaningful. From the Fourier transform of (8), we see that shiftingG0 by an amount̃ω on
the energy axis translates into an identical shift of the self-energy

6GW
RR′(ω − ω̃) =

i

2π

∫
G0
RR′(ω − ω̃ − ω′)WRPA

RR′(ω
′)eiηω′ dω′ (10)

where the contour is closed about the upper half-plane. According to Dyson’s equation, the
chemical potential of the dressed Green’s function becomesµ = µ0 + 〈V H + 6GW(µ −
ω̃) − V 〉, where the matrix element is to be taken with the highest occupied quasiparticle
orbital. In practice we use the corresponding|ψs〉 of the non-interacting system. The shift
is determined in such a way that the chemical potential coincides exactly with that of the
relocated zeroth-order Green’s function; henceµ = µ0+ ω̃. Inserting this relation into the
previous equation yields the explicit solution

ω̃ = 〈V H +6GW(µ0)− V 〉. (11)
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Despite its early suggestion, this self-consistency shift is often ignored inab initio band-
structure calculations, where its impact is normally small. It may substantially improve the
more sensitive satellite spectrum, however. As an example we consider an eight-site chain
at half-filling with U = 1. In figure 2 we display results obtained with and withoutω̃. The
exact spectrum is shown for comparison. While the shift has little effect on the quasiparticle
peaks, the improved description of the satellites is evident even for such a weak interaction.
The results follow our previous demonstration that to a large extentω̃ also restores particle
number conservation, which is generally violated in non-self-consistent many-body theory
[9]. All subsequent calculations incorporateω̃.

Figure 2. The self-consistency shift̃ω, which aligns the chemical potential of the zeroth-order
G0 with that of the dressed Green’s function derived from it, improves the spectral features
substantially even for a very weak interaction ofU = 1. The exact spectrum is shown for
comparison.

4.3. Infinitesimal peak broadening

TheGW approximation constitutes a diagrammatic expansion of the true self-energy to first
order in the screened interaction. The underlying equations (6) to (9) may be solved in the
time as well as in the energy domain. While we employ fast Fourier transforms to switch
between the two as appropriate, most implementations work exclusively in the latter, where
all operations are either multiplicative or feasible but computationally costly convolutions.
It is frequently ignored, however, that the relations are only strictly valid in the limitδ→ 0,
because convolutions with a finite displacement of the singularities from the energy axis
will mix the real and imaginary parts of the propagators. As a consequence, weak features
such as satellites tend to smear out and may even become undetectable in the calculated
spectrum. As an example, figure 3 contrasts the spectral functions from two calculations
with δ = 0.5 and δ = 0.02, where the resonances in the latter were suitably broadened
afterwards for the purpose of comparison. We also show the exact spectrum. The model
specifications areM = 10, N = 14 and medium interactionU = 4. The features in the
second curve are clearly more pronounced. In particular, the reproduction of the satellite
at −4 is superior. The downside of using small values forδ is an increased number of
sampling points, because the energy resolution in a numerical treatment must necessarily
exceed the characteristic peak width. In the following we always chooseδ as small as
computationally possible and only broaden the final spectra to achieve a Lorentzian width
of 0.5 for visualization.



Assessment of theGW approximation 1279

Figure 3. Comparison of spectra calculated withδ = 0.5 andδ = 0.02, where the latter was
broadened afterwards. The smaller Lorentzian width incurs a higher computational cost but
yields more pronounced spectral features.

5. Comparison of different approximation variants

In this section we investigate in detail several variants of theGW -scheme by direct
comparison with exact results. The main criterion that we apply to judge approximations
is their ability to reproduce the overall shape of the true spectral function, i.e. the position
and weight of the quasiparticle excitations as well as their satellites.

5.1. Different initial Hamiltonians

The framework outlined in section 4 allows for considerable freedom in the choice of the
initial mean-field Hamiltonian. We here consider the following options in order of increasing
complexity.

(i) Hedin’s original iterative derivation suggests that the Hartree approximationV = V H

with self-consistently determined site occupation numbers should be used, although this is
rarely done in practice.

(ii) The most common choice inab initio calculations is to start with a self-consistent
exchange–correlation potential from density-functional (DF) theory, which yields the same
charge density as the interacting system. We simulate this procedure by numerically
determining a potentialV = V H + V xc that reproduces the occupation numbers〈n̂Rσ 〉
of the exact solution. We still refer to this approach as density-functional theory, although
it is really asite occupation function(al) theory[10].

(iii) We can also evaluate the self-energy (8) with the exact Green’s functionG, which
is fully renormalized and contains a background satellite spectrum. While this approach
itself is of course not directly relevant to practical calculations, it serves as an example for
implementations that attempt to include a maximum amount of many-body features in the
initial Green’s function.

It was long regarded as self-evident that including as much information about exchange and
correlation as possible in the initial zeroth-order Hamiltonian will provide an optimal starting
point for the iteration. Since the extra computational cost required to include a Hartree or
local-density mean field in the Hamiltonian is negligible compared to that of a complete
GW -calculation, this approach possesses great appeal. As our model is numerically solvable,



1280 T J Pollehn et al

we are in fact able to use the exact Green’s function as an extreme example of an improved
propagator that tries to incorporate as many correlation effects as possible up to dynamic
renormalization. Besides the conventional random-phase approximationWRPA[G0] with
density-functional theory as a zeroth-order approximation we have evaluated the same
diagrams using the exact Green’s function to obtain the more sophisticatedWRPA[G], which
contains a rich satellite spectrum. Note, however, that this is not the exact screening, since
vertex corrections in the polarization are still ignored. In figure 4 we show the exact
spectrum together with the results from the four possible combinations of these dielectric
functions withG0 andG in the self-energy for two electrons on a twelve-site chain with
U = 2. Evidently the four curves differ very little, implying that renormalization does not
improve the spectrum, but the computational expense is considerably higher if the exact
Green’s function is used either in the screening or the self-energy.

Figure 4. Using a renormalized Green’s function or screening in theGW -self-energy without
vertex corrections fails to improve the spectrum. The numbered curves indicate the combinations
(1) G0WRPA[G0], (2) GWRPA[G0], (3) G0WRPA[G] and (4)GWRPA[G] for two electrons on a
twelve-site chain withU = 2.

The rule emerging here is that there is no particular advantage in sophisticated,
renormalized propagators when one works within theGW -scheme. Instead these should be
consistentwith the current level of iteration, because the self-energy (8) neglects explicit
vertex corrections and so does not become exact when evaluated using the true propagators.
In general, over-realistic propagators may even cause the approximation to deteriorate,
because they destroy the balance that exists between the internal diagrammatic expansion
of the Green’s function and screening on the one hand and the vertex function on the other
[11]. We thus restrict ourselves to Hartree and density-functional theory as zeroth-order
approximations in the following and present results for these cases below.

5.2. Model dielectric functions

As the random-phase approximation demands inconvenient numerical convolutions in the
energy domain, practical implementations frequently deviate from the originalGW -scheme
by employing alternative model dielectric functions that can be evaluated directly [12]. In
order of increasing complexity, the following options present themselves.

(i) Neglecting screening effects and using the bare Coulomb interaction is particularly
inexpensive, because no intermediate polarization propagator is required. In this case the
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self-energy

6x
RR′ = −U〈n̂Rσ 〉δRR′ (12)

is diagonal and energy independent. We denote the corresponding Green’s function,
which contains electronic exchange but no dynamic correlation, byGx. If performed self-
consistently, this approach is identical to the Hartree–Fock treatment.

(ii) The screeningWRPA[G0] may be calculated in the random-phase approximation
from the zeroth-order Green’s function in accordance with the original proposition of the
GW approximation, yieldingGGW .

(iii) Irrespective of the initial mean-field Hamiltonian, we can employ a realistic screened
interaction that contains more correlation effects. However, we have already argued earlier
that a unilateral expansion of the screened interaction will not improve the spectrum, and
figure 4 gave a numerical example withWRPA[G] to this effect. Therefore we will not
consider this option further.

In figure 5 we show the exact spectral function for a ten-site chain together with four
approximations, namelyGGW andGx evaluated both with Hartree and density-functional
theory as zeroth-order Hamiltonians. We increase the band filling from 50% in two steps to
90% and consider the situation of medium (U = 4) as well as strong (U = 8) correlation.
Due to the particle–hole symmetry of the Hubbard model, the spectrum for band fillings
below 50% can be obtained by inflection. For reference, we quote the effective potential
parametersVR for a selected system with 70% band filling andU = 4 in table 1.

Table 1. Effective potential parameters in Hartree and density-functional (DF) theory for ten
sites with 70% band filling andU = 4. The chain is symmetric about its centre.

Site index 1; 10 2; 9 3; 8 4; 7 5; 6

Hartree 0.26 −0.02 0.06 0.10 0.06
DF 0.26 −0.33 −0.08 −0.06 −0.15

Irrespective of the correlation strength, the occupation numbers are necessarily uniform
at half-filling due to particle–hole symmetry. Hence in this case the dressed Green’s
functions derived from Hartree and density-functional theory as starting points coincide
except for a constant shift. The exchange6x is also uniform and causes just another
constant shift, while theGW approximation improves slightly but still fails to reproduce
the true spectrum satisfactorily, especially for largeU . For instance, the energy gap in
figure 5(b) is crucially underestimated. On the plus side, the approximations have the
correct symmetry about the chemical potential. As the band filling increases, theGW

approximation at first becomes better but again deteriorates for very large band filling.
The dominant interaction processes in this limit are described by theT -matrix [13], which
renormalizes the Hartree–Fock potential by including multiple scattering in the particle–
particle channel to all orders.6GW ignores these diagrams and so does not reproduce the
spectrum well: it is outperformed even by the unrenormalized exchange approximation.
TheGW approximation works best for intermediate band filling as in figures 5(c) and 5(d),
where it yields good results even for strong correlation. In this regime there is also little
difference between Hartree and density-functional theory as starting points, unlike for higher
band filling where theGW approximation breaks down. The description of quasiparticles
is in general superior to that of satellites, which are more sensitive to the specific form of
many-body interaction processes. The bare exchange approximation naturally works best
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Figure 5. The exact Green’s function for a ten-site chain compared to theGW approximation
GGW and the exchange-onlyGx for different band fillingsN/(2M) and correlation strengths
U . Where pairs of curves are shown, the solid line refers to a zeroth-order density-functional
and the dotted line to a Hartree Hamiltonian. Some small satellites are marked by arrows.
TheGW -scheme performs best for intermediate band filling. The exchange-only scheme yields
increasingly accurate quasiparticles for high band filling and weak correlation but cannot produce
satellites.

in situations where screening effects are negligible, i.e. if the interaction is weak and/or the
band filling is very high, such as in figure 5(e). The absence of long-range interaction in the
Hubbard model adds to this effect. Hartree theory as a zeroth-order approximation gives
consistently better results than density-functional theory. Being an effective mean field,
6x of course cannot produce a satellite structure. This is acceptable, however, because
collective excitations carry little spectral weight in the limits of smallU and high fractional
band filling.

6. Conclusions

We have examined the implementation and performance of theGW approximation by
comparing exact and approximate spectra for finite Hubbard chains that exhibit Fermi-liquid
behaviour. The insensitivity with respect to the chain length makes the results transferable,
although further investigations for higher-dimensional systems will be useful. Focusing on
the computational implementation, we pointed out that the mathematical structure of many-
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body perturbation theory requires a shift aligning the chemical potentials in Dyson’s equation
as well as a minimization of the artificial Lorentzian broadening of spectral peaks. In each
case model calculations clearly demonstrated improvements in theGW approximation,
particularly with respect to the satellite spectrum. Next we studied the performance of
the GW approximation and the related bare exchange approximation for various band
fillings and correlation strengths. Our results show that the former can yield good results
for intermediate band filling even if the correlation is strong, while the latter provides a
computationally cheaper alternative for weak correlation and small or high band filling. The
description of quasiparticles is generally better than that of satellites. We have also shown
evidence that renormalized propagators will not improve theGW approximation without
the inclusion of appropriate vertex corrections in the self-energy.
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